skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bate, Teagan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Active fluids have potential applications in micromixing, but little is known about the mixing kinematics of such systems with spatiotemporally-varying activity. To investigate, UV-activated caged ATP was used to activate controlled regions of microtubule-kinesin active fluid inducing a propagating active-passive interface. The mixing process of the system from non-uniform to uniform activity as the interface advanced was observed with fluorescent tracers and molecular dyes. At low Péclet numbers (diffusive transport), the active-inactive interface progressed toward the inactive area in a diffusion-like manner and at high Péclet numbers (convective transport), the active-inactive interface progressed in a superdiffusion-like manner. The results show mixing in non-uniform active fluid systems evolve from a complex interplay between the spatial distribution of ATP and its active transport. This active transport may be diffusion-like or superdiffusion-like depending on Péclet number and couples the spatiotemporal distribution of ATP and the subsequent localized active stresses of active fluid. Our work will inform the design of future microfluidic mixing applications and provide insight into intracellular mixing processes. *T.E.B., E.H.T., J.H.D., and K.-T.W. acknowledge support from the National Science Foundation (NSF-CBET-2045621). C.-C. C. was supported through the National Science and Technology Council (NSTC), Taiwan (111-2221-E-006-102-MY3). M.M.N. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0022280). 
    more » « less
  2. Active fluids with spatiotemporally varying activity have potential applications to micromixing; however previously existing active fluids models are not prepared to account for spatiotemporally-varying active stresses. Our experimental work used UV-activated caged ATP to activate controlled regions of microtubule-kinesin active fluid inducing a propagating active-passive interface. Here, we recapitulate our experimental results with two models. The first model redistributes an initial ATP distribution by Fick's law and translates the ATP distribution into a velocity profile by Michaelis-Menton kinetics. This model reproduces our experimental measurements for the low-Péclet number limit within 10% error without fitting parameters. However, as the model is diffusion based, it fails to capture the convective based superdiffusive-like behaviour at high Péclet numbers. Our second model introduces a spatiotemporally varying ATP field to an existing nematohydrodynamic active fluid model and then couples the active stresses to local ATP concentrations. This model is successful in qualitatively capturing the superdiffusive-like progression of the active-inactive interface for high Peclet number (convective transport) experimental cases. Our results show that new model frameworks are necessary for capturing the behaviour of active fluid with spatiotemporally varying activity. *T.E.B., E.H.T., J.H.D., and K.-T.W. acknowledge support from the National Science Foundation (NSF-CBET-2045621). C.-C. C. was supported through the National Science and Technology Council (NSTC), Taiwan (111-2221-E-006-102-MY3). M.M.N. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0022280). 
    more » « less
  3. Fluid mixing is driven by the passive process of diffusion and the active process of stretching and folding, which homogenize the system's constituents. Conventionally, the active process is applied via external shearing machines such as a kitchen stand mixer. However, applying external shearing becomes more challenging in mesoscopic fluid systems due to the increasing difficulty of controlling the injection of energy on the micron scale. To overcome this challenge, we introduced microtubule-kinesin active fluid to power the active mixing process. To demonstrate its mixing capability, we created a multi-fluid system where active fluid is adjacent to an inactivated, passive fluid and allowed the active fluid to blend with the passive fluid until the system reaches a homogeneous state. We found that the mixing dynamics of such active-passive fluid mixing was dominated by the passive process of diffusion, until the activity of active fluid was tuned to be sufficiently high and the active processes of active fluid began to dominate the mixing process. Our work will stimulate the development of utilizing active fluid to accomplish mesoscale mixing tasks in multi-fluid systems at the micron scale. *We acknowledge support from the National Science Foundation (NSF-CBET-2045621). 
    more » « less
  4. Abstract Active fluids have applications in micromixing, but little is known about the mixing kinematics of systems with spatiotemporally-varying activity. To investigate, UV-activated caged ATP is used to activate controlled regions of microtubule-kinesin active fluid and the mixing process is observed with fluorescent tracers and molecular dyes. At low Péclet numbers (diffusive transport), the active-inactive interface progresses toward the inactive area in a diffusion-like manner that is described by a simple model combining diffusion with Michaelis-Menten kinetics. At high Péclet numbers (convective transport), the active-inactive interface progresses in a superdiffusion-like manner that is qualitatively captured by an active-fluid hydrodynamic model coupled to ATP transport. Results show that active fluid mixing involves complex coupling between distribution of active stress and active transport of ATP and reduces mixing time for suspended components with decreased impact of initial component distribution. This work will inform application of active fluids to promote micromixing in microfluidic devices. 
    more » « less
  5. Active fluid, composed of kinesin-driven extensile bundles of microtubules, consumes ATP locally to create a self-mixing flow. Mean speed of microtubule-kinesin active fluid was shown to be tunable by varying its components’ concentrations. Such tunability demonstrated the controllability of active fluid with uniform activity. However, how active fluid self-organizes when its activity is non-uniform remains poorly understood. Here, we characterized active fluid behavior and its associated mixing performance in an activity gradient. The activity gradient was created by imposing a temperature gradient because our previous work showed that microtubule-kinesin active fluid exhibited an Arrhenius response to temperature: Increasing temperature sped up active fluid flow, and thus, along a temperature gradient, active fluid flowed faster on one side and slower on the other, forming an activity gradient. We characterized how such a gradient influenced the mixing performance of active fluid in terms of mixing efficiency, stretching rate, and mean squared displacement, comparing with an activity-uniform sample. Our work suggests that applying an activity gradient can serve as a new in-situ method for controlling self-organization and mixing performance of microtubule-kinesin active fluid. 
    more » « less
  6. Active matter is differentiated from conventional passive matter due to its unique capability of locally consuming fuels to generate kinetic energy. Such a unique feature of active matter has led to unprecedented phenomena and associated applications. While active matter has been developed for decades, its significance is not recognized by the public. To remedy this gap, we developed an online teaching module introducing collective dynamics of active matter, targeting high school and undergraduate students. The collective dynamics were illustrated via the Vicsek model-based simulation because it reveals the collective dynamics of active matter with one simple rule: nearest-neighbor alignment. With this rule, the simulation demonstrated the collective motion of active matter particles depended on particle number, radius of neighbor aligning, and noise that disturbed alignment. To allow students to hands-on experience the simulation, we developed a graphical user interface, allowing users to perform the Vicsek simulation without a programming background. The simulation and teaching module are available on an online platform: The Partnership for Integration of Computation into Undergraduate Physics, allowing teachers in the US to bring the active matter lecture to their classrooms. 
    more » « less